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MASS TRANSPORT IN A NONUNIFORM ISOTHERMAL MIXTURE OF REAL GASES 

A. S. Raspopin, P. E. Suetin, 
P. I. Bogdanov, and P. G. Zykov 

UDC 533.15 

A method of describing mass transport in a nonuniform isothermal mixture of real 
gases is given. The computed results are compared with experimental data. 

It has been reliably established that for isothermal diffusion in gas mixtures in the 
absence of external forces, there is a loss of mechanical equilibrium [i, 2]. Therefore, 
even in a nonuniform mixture of ideal gases, the process of mass transport is composed of 
two physically distinct components. The first is due to the random migration of molecules 
in a mixture that is nonuniform in composition (self diffusion [2]), while the second com- 
ponent is due to pressure nonuniformities, which are practically unavoidable, and which 
lead to the transport of all of the components of the mixture in a given volume element as 
a whole (convective transport). The existence of two physically distinct transport mecha- 
nisms whose contributions to the total mass transport process can be of the same order of 
magnitude [2] means that both components must be taken into account in a theory of mass 
transport. 

The usual method of taking into account the convective component of mass transport is 
to impose certain conditions on the fluxes, which are characteristic of the device in which 
the diffusion is observed. An example of a restriction of this kind is the assumption that 
the mean velocity is equal to zero in the diffusion of ideal gases in a two-bulb device [3]. 
When restrictions are introduced, mass transport can be described sufficiently accurately 
in the particular device under consideration. For example, in the two-bulb device the above 
restriction allows one to describe the quasistationary stage of the mass transport and to 
obtain a unique characteristic of the process - the coefficient of mutual diffusion [3]. 

However, there are at least two reasons why an approach of this kind cannot be consi- 
dered completely satisfactory. The first is that if we want to describe diffusion in a de- 
vice with a different geometric shape or with different conditions on the boundary of the 
device, the applicability of the restrictions must be re-examined because the characteris- 
tics of the process (such as the coefficient of mutual diffusion) are partly determined by 
these restrictions [2] and the same characteristics cannot be used to describe diffusion in 
a different device unless exactly the same restrictions are introduced. Here it should also 
be noted that the nature of the restrictions can change significantly when we go from ideal 
gases to real gases. For example, in the diffusion of real gases in a two-bulb device, the 
average velocity will not be zero even in the quasistationary case since the number den- 
sities of different real gases are not equal at equal pressure. 

The second reason is that the introduction of restrictions reduces the description of a 
complicated mass transport process to a form natural for only one of the components. For 
example, the convective component is automatically included in the flux given by Fick's first 
law of diffusion. Such a reduction of two physically different processes into a single des- 
cription leads to doubts about its validity (especially for real gases) and to difficulties 
in the interpretation of the experimental data [4]. 
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Fig. i. Distribution of the molar fraction along 
the length of the channel~ a) Capillary method, 
argon -helium mixture, �9 = ~2Dl2t/4L2, i) �9 = 0.i, 
2) 0.5, 3) i; b) Loshmidt method, argon -helium mix- 
ture, T = v2Dl2t/L 2, i) T = 0.52, 2) !; c) station- 
ary flow-through method, argon-helimm mixture, 
steady-state distribution; d) Stefan method, ace- 
tone-nitrogen mixture, steady-state distribution. 
Points represent solution of (10)-(12)o Solid 
lines: solution of second Fick equation with 
constant Dz2 (a, b); approximation of experi- 
mental data of [i, 12] (c and d). 

We discuss a method of describing mass transport in an isothermal mixture of real gases, 
It is based on the concept that there are two components of the process and does not require 
restrictions of any kind on the fluxes. It will be shown below that this method gives a 
complete description of mass transport in moderately dense gas mixtures with a minimun of 
information about the properties of the gases making up the mixture. 

We consider a nonuniform isothermal mixture of real gases consisting of n componer~ts. 
According to the two-component model of mass transport [2], the total molar flux density 
of the i-th component of the mixture N i can be written as 

N i = N~d ~- N~, ( 1 ) 

where Nid is the flux density of the i-th component due only to random migration of molec- 
ules of type i in the gas mixture (the diffusive flux density); Nic is the flux density of 
the i-th component due to motion of a volume element of the mixture as a whole (convective 
flux density). Using Fick~s first law of diffusion, we can write 

N~d - -  - -  D ~ v c  i, ( 2 ) 

where D i is the coefficient of self-diffusion in the mixture [5], and describes the trans- 
port of molecules of the i-th component due only to their random migration in the gas mix- 
ture. The quantity Nic can be written as 

Ni c :  c~v, ( 3 ) 

v is the velocity of the volume element as a whole due to a pressure nonuniformity. 
stituting (2) and (3) into (i), we obtain 

N~ . . . .  D~VC~ § c~v. 

S11b - 
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Fig. 2. Results of the calculation for the two- 
bulb method. Argon-helium mixture: a) time de- 
pendence of the molar fraction of argon in the 
bulb initially filled with pure helium, ~ = 0.04- 
DI2t/L2; b) distribution of the molar fraction 
of argon with channel length, ~ = i. The points 
represent the solution of (i0) through (12). The 
solid line is the solution of the second Fick 
equation with constant D~2. 

Using the Blank formula [5], 

where 6 = ~  cj 
/=I 

the coefficient D i can be written as: 

i=1 cD~j 7 ' 
( 5 )  

Here Dij (j ~ i) is the trace coefficient of mutual diffusion of type i molecules in a 
gas of type j molecules for a molar density c; Dii is the coefficient of self-diffusion of 
type i molecules for a molar density c. Equation (5) is supported experimentally for bin- 
ary mixtures of dense gases and even certain liquid mixtures [5], and also for trinary mix- 
tures of dense gases [6]. In addition, it has been shown experimentally [6, 7] that the 
products cDij do not depend on the molar density c (they are constants for a given temper- 
ature) up to densities of the order of the critical density. The constancy of these quan- 
tities indicates that the density dependence of the coefficients of mutual and self-diffu- 
sion corresponds to the theory of a rarefied gas over a wide interval of densities. 

Gases for which the products cDij do not depend on density will be called moderately 
dense gases. (We note that the equation of state of such a gas can differ significantly 
from the ideal gas law). We introduce the constant quantities Aij = cDij and substitute in 
(5): 

Di = ~ . (6) 

Substituting D i from (6) into (4), we obtain an expression for Ni: 

Substitution of this expression in the equation of continuity for the i-th component of 
the mixture (in the absence of chemical transformations [8]) gives 

a--7- .  + v - = 0 .  ( 8 )  

Three  a d d i t i o n a l  e q u a t i o n s  must  be added t o  t h e  n e q u a t i o n s  o f  t h e  form (8)  in  o r d e r  t o  have  
a c l o s e d s y s t e m  o f  e q u a t i o n s  f rom which  a l l  o f  t h e  unknown f u n c t i o n s  can be d e t e r m i n e d  ( t h e  
n functions el(r, t) and the three components of the velocity v(r, t)). Since v is defined 
as the velocity of a volume element in the mixture as a whole due to a pressure nonuniform- 
ity, one can take the Navier-Stokes equations as the needed equations. For a compressible 
fluid in the absence of body forces we have 

p - ~  + (vv) v = - -  vp  + ~ Av + -~- v (vv) , ( 9 )  
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F i g .  3. Time d e p e n d e n c e  o f  < c x > / c l  ~ E x p e r i m e n t a l  
d a t a :  1) s u l f u r  h e x a f l u o r i d e - m e t h a n e ,  p = 3 .79  
MPa, c l  ~ = 2 .832  kmole /m 3, c2 ~ = 1 .481 kmole /m3;  
2) s u l f u r  h e x a f l u o r i d e - a r g o n ,  p = 4 . 1 0  MPa, c !  ~ 
4 . 1 6 3  kmole /m3;  c2 ~ = 1 .546  kmole /m3;  3) s u l f u r  
h e x a f l u o r i d e - x e n o n ,  p = 3 . 9 0  MPa, c l  ~ = 3 .148  
kmole /m 3, c2 ~ = 1 .776  kmole /m ~. The t e m p e r a t u r e  
was 323~ f o r  a l l  r u n s .  S o l i d  c u r v e s :  s o l u t i o n  o f  
(10)  t h r o u g h  (12)  f o r  t h e  c o r r e s p o n d i n g  c o n d i t i o n s .  
t, i0 ~ see. 

where 

p = ~ c j M j .  
f=l 

The p r e s s u r e  p in  (9 )  mus t  have  t h e  e x p l i c i t  f u n c t i o n a l  d e p e n d e n c e  p = p ( c  1, c2,  . . . ,  c n)  
wh ich  can  be o b t a i n e d  by u s i n g  t h e  e q u a t i o n  o f  s t a t e  o f  t h e  m i x t u r e ,  f o r  e x a m p l e .  Th~ v i s -  
c o s i t y  ~ o f  t h e  m i x t u r e  w i l l  a l s o  be  o f  t h e  fo rm ~ = O ( c i ,  c 2 . . . . .  Cn).  I t s  e x p l i c i ~  fo rm 
can  be o b t a i n e d  f o l l o w i n g  t h e  s u g g e s t i o n s  in  [ 8 ] .  Hence t h e  n e q u a t i o n s  o f  t h e  fo rm ~8) and 
e q u a t i o n  (9 )  f o r m  a s y s t e m  o f  n + 3 ~ q u a t i o n s  f o r  t h e  n + 3 unknow~ f u n c t i o n s  m e n t i o n e d  
above. The solution of this system of equations (for specified initial and boundary :ondi- 
tions) gives a complete description of the mass transport process in an isothermal mixture 
of moderately dense gases. 

We consider the solution of the system (8) and (9) for the case of a binary mixtu::e 
only. In addition, we consider only the one-dimensional case, when all unknown functions 
depend on a single coordinate x (c i = ci(x, t), for example), and the velocity v lies along 
the x axis and v = v(x, t). The use of one-dimensional models of the experimental menhods 
(in which the data is obtained which will be compared with the solution of the system (8) 
and (9)) should not lead to significant errors in the description of mass transport. (It 
is well-known that one-dimensional models are used in the theoretical description of practi- 
cally all experimental methods of studying diffusion). 

For binary mixtures of moderately dense gases in the one-dimensional case, (8) and (9) 
can be written in the form 

a~ 

o--f - -  c,&~ + c~&: Ox~ c:A~2 + c~A:: --G--x + A:: Ox / ] + ~: -~x + ~ - - -  = O, ox (io) 

0c2 
Oc~ A22A~, [ OM Ox - ( A2, Oc~ at1 t ]  Ov Oc2 =0,  (il) 
Ot clA2~ q- c, A21 L ox---G- - c~A22 q- c2A~ ~ q- A~ Ox / q- c~ -~x q- v Ox 

Ov 1 ( ap 4 9 a 2 v )  Ov q-v . . . .  
o--7 ox c~M~+c2M~ ~x 4 3 ax 2 " ( !2 )  
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In (i0) through (12) the viscosity p is assumed to be constant and equal to the average value 
of the viscosities of the pure components. In addition we assume A21 = A12 so that the trace- 
coefficients of mutual diffusion are given either by experimentally measured values, or 
calculated from the formulas of the first approximation of the Chapman-Enskog theory. In 
an ideal gas mixture the equation of state of an ideal gas is used in the form p = (c I + c2). 
RT, while for dense gas mixtures we use the virial equation of state of the mixture, includ- 
ing the third virial coefficient: 

p = r + c2) RT [1 + B . ( c l  ~ c~) + ~ix(cl  + c~)~l, 
m i x  ' ( 1 3 )  

where Bmi x and Cmi x are the second and third virial coefficients of the mixture. The co- 
efficients Bmi x and Cmi x were obtained using the methods of [9], which give the explicit 
dependence of Bmi x and Cmi x on cl, c2, and the virial coefficients of the pure comPonents. 
We note that all constants needed in order to solve (10)-(12) (A11 , A12 , A22 , the virial co- 
efficients of the pure components, the viscosity) can be obtained either from experimental 
data or calculated from expressions relating these parameters to the molecular interaction 
potential [i0]. 

The method was tested by applying the system of equations (i0) through (12) to mass 
transport in ideal and real binary gas mixtures. We used initial and boundary conditions 
appropriate for the one-dimensional models of five well-known and acceptedexperimental 
methods of studying diffusion in gases (the capillary method, Loshmidt method, two-bulb 
method, method of Stefan, stationary flow-through method). The system (10)-(12) was solved 
numerically using finite differences on a grid of 25 points (13 points for the two-bulb 
method). All derivatives were approximated to first order accuracy. Equations (i0) and 
(ii) were solved using an explicit scheme with velocities obtained from the preceding time 
step, while (12) was solved with an implicit scheme using only the values of c I and c 2. Since 
the time step was always less than 10 -4 times the characteristic diffusion time, this method 
leads only to an insignificant error in the time for which the solution is determined. 

As an example, Fig. la shows a one-dimensional model of the capillary method. The re- 
gion of space 0 < x J L represents the "capillary" and it is filled initially with a pure gas 
of type 1 whose molar density is cl ~ The region x J 0 is filled with a gas of type 2 with 
molar density c2 ~ For mass transport in ideal gases we have c2 ~ = cl ~ For real gases c2 ~ 
was calculated from the equation of state of the pure type 2 gas with the condition that the 
pressures in the "volume" x J 0 and "capillary" be equal at the initial time. The initial 
condition on the velocity was v = 0 at all points of the grid. The boundary conditions on 
the open end of the capillary (x = 0) were c I = 0, c 2 = c2 ~ (the volume of the capillary is 
much smaller than the volume with the type 2 gas). The boundary condition v(-h, t) = v(0, t) 
was used for the velocity at the open end of the capillary. That is, the velocity at the fic- 
titious grid point to the left of x = 0 was assumed equal to the value at x = 0. The nume- 
rical results show that the distributions of c I and c 2 along the length of the capillary de- 
depend very weakly on this boundary condition (one could also use v(-h, t) = 0). At the 
closed end of the capillary (x = L): 8ci/8x = 0, 8c2/8x = 0, and v = 0 (from the condition 
that the gas cannot penetrate through the closed end). One-dimensional models of the other 
experimental methods and the appropriate boundary conditions are constructed in a similar 
way. 

The solution of the system (10)-(12) is shown in Figs. 1 and 2 for ideal gas mixtures. 
In all of the calculations (except for the Loshmidt method) the channel was initially filled 
with the heavier gas (type i). In the Loshmidt method each of the gases initially occupy 
half of the channel. 

The results of Figs. 1 and 2 show good agreement between our method and the usual 
method, and also the experimental data for ideal gases. We note the small (of order 10%) 
difference observed in Fig. 1 near the closed end of the channel. The difference apparently 
occurs because for the coarse grid used here the zero boundary condition for the velocity v 
at the closed end of the channel significantly affects the velocity at neighboring grid 
points and distorts the solution somewhat. Calculations for the capillary method using a 
coarser grid (8 lattice points) show that the difference near the closed end of the capillary 
increases by about a factor of two. 

Figure 3 shows the experimental results and the solution of the system (i0) through (12) 
for mass transport in the capillary method for three significantly nonideal gas mixtures. 
In all cases the capillary was initially filled with pure sulfur hexafluoride of known ini- 
tial molar density cl ~ The volume joined with the capillary (about I00 times larger than 
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Fig. 4. Distribution of the molar flux densities 
along the length of the channel (in relative 
units): a) Stefan method (conditions as in Fig. 
id); b) stationary flow-through method (condi- 
tions as in Fig. ic); c) two-bulb method (condi- 
tions as in Fig. 2b); I) N1d; 2) Nlc; 3) NI; 4) 
N=d; 5) N2c ; 6) N 2. 

the capillary volume) was filled with a different pure gas with a density c2 ~ such t~at its 
pressure was equal to that of the sulfur hexafluoride in the capillary. The mass trsnsport 
process was followed by measuring the mean molar density of the sulfur hexafluoride <ci> 
over a short portion of the capillary (~0.14L) using the NMR method described in [131o 

The comparison in Fig. 3 demonstrates good agreement between our method and experiment. 
For mixtures containing methane a significant (of order 20%) systematic overestimate of the 
calculations is observed at large values of the time. The most probable cause is an unfor- 
tunate choice of the virial coefficients for methane used in the calculation of the ~res- 
sure from equation (13). 

Figure 4 shows the molar flux density distributions along the length of the channel, cal- 
culated from the solution of the system (10)-(12) (Eqs. (2)-(5) were used). 

It is clear from Fig. 4 that in spite of the fact that the quantities N I and N 2 are the 
sums of the quantities Nld and Nlc, N2d and N2c, which vary significantly along the length 
of the channel, the fluxes N I and N 2 are constant along the length of the channel, as they 
must be for steady-state methods (for the two-bulb method this also must be true in the 
quasistationary stage of the process). Also for the Stefan method N 2 must be zero and there- 
fore the fluxes N2d and N2c must exactly cancel one another. This is also evident from 
Fig. 4a (the deviation of N 2 from zero does not exceed 4% of the fluxes N2d and N2c, ~hich 
is consistent with the accuracy of the solution for the grid used here). Finally, we must 
have N I + N 2 = 0 for the two-bulb method in the case of ideal gases, and this is evigent 
from Fig. 4c. In addition to the above three facts, which follow from conservation of num- 
ber of particles in a volume element, we point out two more. First, from the theoretical 
analysis of the stationary flow-through method [2] it follows that the ratio N2/N l m~st be 
equal to (MI/M2) I/2 (for the system argon -helium this quantity is 3.16). It is seen from 
Fig. 4b that this relation is satisfied to within the accuracy of the grid used for t~e cal- 
culations. Also from the theory of the two-bulb method for ideal gases [3] it follows that 
the molar fractions must vary linearly along the length of the channel. This is seen to 
be the case in Fig. 2b. 

Hence the idea that the process of mass transport consists of two components lead~ to a 
good description of the process in moderately dense gases using a minimum amount of informa- 
tion on the properties of the gases making up the mixture. (In practice it is sufficient 
to know the parameters of the molecular interaction potentials for the pure gases). 

Our method does not require information on the behavior of the kinetic characteri~tics 
of mass transport for arbitrary ratios of the concentrations of the components. 

The possibility of extending the applicability of our method to mass transport in still 
denser gases is obvious. It would only be necessary to know the dependence of the quantities 
Aij and Aii on the density c. 
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Our approach can be extended to the case of mass transport in a system with chemical 
transformations. In order to do this an expression of the type (7) must be substituted 
into more general conservation equations including the molar rate of formation of one of 
the components per unit volume' (see [8, Chap. 17]). Naturally, the explicit dependence 
of these rates on the molar densities of the components of the mixture must be known. 

NOTATION 

i, j, indices numbering the components of the mixture; n, number of components in the 
mixture; Ni, total molar flux density of the i-th component; Nid , diffusive molar flux den- 
sity of the i-th component; Nic , convective molar flux density of the i-th component; Ni, 
Nid, and Nic, corresponding flux densities in the one-dimensional case; ci, partial molar 
density of the i-th component: v, velocity of a volume element of the mixture as a whole, 
due to a pressure nonuniformity (v in the one-dimensional case); Di, coefficient of self- 
diffusion of the i-th component in the mixture; c, total molar density of the mixture; Dil , 
trace coefficient of mutual diffusion of molecules of type i in gas j; Dii , coefficient o~ 
self-diffusion of gas i; Aij = cDij; p, mass density; p, pressure; ~, viscosity; Mi, molec- 
ular mass of the i-th component; R, universal gas constant; T, temperature; Bmi x and Cmix, 
second and third virial coefficients of the mixture; x, coordinate; Dl2 , coefficient of 
mutual diffusion; L, length of the channel in which mass transport is considered; h, grid 
step size; t, time; ~, dimensionless time; ci ~ initial molar density of the i-th component; 
<ci>, molar density of sulfur hexafluoride averaged over a short part of the channel. 
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